A Hybrid Fine-Tuned Multi-Objective Memetic Algorithm
نویسندگان
چکیده
In this paper, we propose a hybrid fine-tuned multiobjective memetic algorithm hybridizing different solution fitness evaluation methods for global exploitation and exploration. To search across all regions in objective space, the algorithm uses a widely diversified set of weights at each generation, and employs a simulated annealing to optimize each utility function. For broader exploration, a grid-based technique is adopted to discover the missing nondominated regions on existing tradeoff surface, and a Pareto-based local perturbation is performed to reproduce incrementing solutions trying to fill up the discontinuous areas. Additional advanced feature is that the procedure is made dynamic and adaptive to the online optimization conditions based on a function of improvement ratio to obtain better stability and convergence of the algorithm. Effectiveness of our approach is shown by applying it to multi-objective 0/1 knapsack problem (MOKP). key words: hybrid, fine-tuned, memetic algorithm, multi-objective optimization, multi-objective 0/1 knapsack problem
منابع مشابه
MMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملA multi-objective memetic algorithm for risk minimizing vehicle routing problem and scheduling problem
In this paper, a new approach to risk minimizing vehicle routing and scheduling problem is presented. Forwarding agents or companies have two main concerns for the collection of high-risk commodities like cash or valuable commodities between the central depot and the customers: one; because of the high value of the commodities transported, the risk of ambush and robbery are very high. Two; the ...
متن کاملA Multi-objective Memetic Algorithm for Sustainable Design of Frp Composite Structures
An approach for decreasing costs in lightweight structures using FRP composite materials is applied considering hybrid construction where expensive and high-stiffness materials are used together with inexpensive and low-stiffness material. So, a Multi-objective Memetic Algorithm (MOMA) searching Pareto-optimal front is proposed. The trade-off between minimum weight/sustainable costs and minimum...
متن کاملMulti-Objective Optimization of Standard Cell Placement using Memetic Algorithm
Beyond the optimization of single parameter (usually the wire-length) in Standard Cell Placement (SCP), focus in the present work is laid on the optimization of speed, power, and the wire length. As discussed in our previous work of hybrid algorithms for single objective optimization of SCP the main advantage of hybridization is the improvement in convergence speed to Pareto front although it l...
متن کاملAn Intelligent Optimization Model for Multi-objective Order Allocation Planning
This paper presents a multi-objective order allocation planning problem with the consideration of various real-world production features. A novel hybrid intelligent optimization model, integrating a multi-objective memetic optimization process, a Monte Carlo simulation technique and a heuristic pruning technique, is proposed to handle this problem. Experiments based on industrial data are condu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEICE Transactions
دوره 89-A شماره
صفحات -
تاریخ انتشار 2006